about summary refs log tree commit diff
path: root/src/monkey_brain/perceptron.zig
blob: c65fc41c96e162bf1fe4c91faa6936ceb427a4fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
const std = @import("std");
const testing = std.testing;
const math = std.math;

const input_size: usize = 2;
const training_set_size: usize = 4;
const learning_rate: f64 = 0.1;
const epochs: u64 = 1000000;

fn sigmoid(x: f64) f64 {
    return 1.0 / (1.0 + math.exp(-x));
}

fn sigmoid_derivative(output: f64) f64 {
    return output * (1.0 - output);
}

fn predict(weights: [input_size]f64, bias: f64, inputs: [input_size]f64) f64 {
    var total: f64 = bias;
    for (inputs, 0..) |input, i| {
        total += weights[i] * input;
    }
    return sigmoid(total);
}

fn train(weights: *[input_size]f64, bias: *f64, training_data: [training_set_size][input_size]f64, labels: [training_set_size]f64) void {
    for (0..epochs) |_| {
        for (training_data, labels) |inputs, label| {
            const prediction = predict(weights.*, bias.*, inputs);
            const err = label - prediction;
            const adjustment = err * sigmoid_derivative(prediction);
            for (inputs, 0..) |input, j| {
                weights[j] += learning_rate * adjustment * input;
            }
            bias.* += learning_rate * adjustment;
        }
    }
}

pub fn demo() !void {
    var weights = [_]f64{ std.crypto.random.float(f64), std.crypto.random.float(f64) };
    var bias: f64 = std.crypto.random.float(f64);

    const training_data = [_][input_size]f64{
        .{ 0, 0 },
        .{ 0, 1 },
        .{ 1, 0 },
        .{ 1, 1 },
    };
    const labels = [_]f64{ 0, 1, 1, 1 }; // OR operation

    train(&weights, &bias, training_data, labels);

    std.debug.print("Trained weights: {d}, {d}\n", .{ weights[0], weights[1] });
    std.debug.print("Trained bias: {d}\n", .{bias});

    for (training_data, labels) |inputs, expected| {
        const prediction = predict(weights, bias, inputs);
        std.debug.print("Input: {d}, {d}, Predicted: {d:.4}, Expected: {d}\n", .{ inputs[0], inputs[1], prediction, expected });
    }
}

test "OR gate" {
    var weights = [_]f64{ 0, 0 };
    var bias: f64 = 0;

    const training_data = [_][input_size]f64{
        .{ 0, 0 },
        .{ 0, 1 },
        .{ 1, 0 },
        .{ 1, 1 },
    };
    const labels = [_]f64{ 0, 1, 1, 1 };

    train(&weights, &bias, training_data, labels);

    for (training_data, labels) |inputs, expected| {
        const prediction = predict(weights, bias, inputs);
        try testing.expect((prediction - expected) < 0.1);
    }
}