const std = @import("std"); const testing = std.testing; const math = std.math; const input_size: usize = 2; const training_set_size: usize = 4; const learning_rate: f64 = 0.1; const epochs: u64 = 10000; // https://en.wikipedia.org/wiki/Sigmoid_function - more details // https://www.youtube.com/watch?v=TPqr8t919YM fn sigmoid(x: f64) f64 { return 1.0 / (1.0 + math.exp(-x)); } fn sigmoid_derivative(output: f64) f64 { return output * (1.0 - output); } fn predict(weights: [input_size]f64, bias: f64, inputs: [input_size]f64) f64 { var total: f64 = bias; for (inputs, 0..) |input, i| { total += weights[i] * input; } return sigmoid(total); } fn train(weights: *[input_size]f64, bias: *f64, training_data: [training_set_size][input_size]f64, labels: [training_set_size]f64) void { for (0..epochs) |_| { for (training_data, labels) |inputs, label| { const prediction = predict(weights.*, bias.*, inputs); const err = label - prediction; const adjustment = err * sigmoid_derivative(prediction); for (inputs, 0..) |input, j| { weights[j] += learning_rate * adjustment * input; } bias.* += learning_rate * adjustment; } } } pub fn demo() !void { var weights = [_]f64{ std.crypto.random.float(f64) * 2 - 1, std.crypto.random.float(f64) * 2 - 1 }; var bias: f64 = std.crypto.random.float(f64) * 2 - 1; const training_data = [_][input_size]f64{ .{ 0, 0 }, .{ 0, 1 }, .{ 1, 0 }, .{ 1, 1 }, }; const labels = [_]f64{ 0, 1, 1, 1 }; // OR operation train(&weights, &bias, training_data, labels); std.debug.print("Trained weights: {d}, {d}\n", .{ weights[0], weights[1] }); std.debug.print("Trained bias: {d}\n", .{bias}); for (training_data, labels) |inputs, expected| { const prediction = predict(weights, bias, inputs); std.debug.print("Input: {d}, {d}, Predicted: {d:.4}, Expected: {d}\n", .{ inputs[0], inputs[1], prediction, expected }); } } test "OR gate" { var weights = [_]f64{ 0.3, 0.2 }; var bias: f64 = 0.5; const training_data = [_][input_size]f64{ .{ 0, 0 }, .{ 0, 1 }, .{ 1, 0 }, .{ 1, 1 }, }; const labels = [_]f64{ 0, 1, 1, 1 }; train(&weights, &bias, training_data, labels); for (training_data, labels) |inputs, expected| { const prediction = predict(weights, bias, inputs); const predicted_error = prediction - expected; std.debug.print("Predicted error {}\n", .{predicted_error}); std.debug.print("Predicted: {} | Expected: {}\n", .{ prediction, expected }); try testing.expect(predicted_error < 0.1); } }