const std = @import("std"); const testing = std.testing; const input_size: usize = 2; const training_set_size: usize = 4; const learning_rate: f64 = 0.1; const epochs: u64 = 100 * 1000; fn sigmoid(x: f64) f64 { return 1.0 / (1.0 + std.math.exp(-x)); } fn sigmoid_derivative(output: f64) f64 { return output * (1.0 - output); } fn predict(weights: [input_size]f64, bias: f64, inputs: [input_size]f64) f64 { var total: f64 = 0.0; for (0..input_size) |i| { total += weights[i] * inputs[i]; } total += bias; return sigmoid(total); } fn train(weights: *[input_size]f64, bias: *f64, training_data: [training_set_size][input_size]f64, labels: [training_set_size]f64) void { for (0..epochs) |_| { for (0..training_set_size) |i| { const prediction = predict(weights.*, bias.*, training_data[i]); const err = labels[i] - prediction; const adjustment = err * sigmoid_derivative(prediction); for (0..input_size) |j| { weights[j] += learning_rate * adjustment * training_data[i][j]; } bias.* += learning_rate * adjustment; } } } pub fn main() !void { const w1 = std.crypto.random.float(f64); const w2 = std.crypto.random.float(f64); var weights: [input_size]f64 = .{ w1, w2 }; var bias: f64 = 0.0; const training_data: [training_set_size][input_size]f64 = .{ .{ 0, 0 }, .{ 0, 1 }, .{ 1, 0 }, .{ 1, 1 } }; const labels: [training_set_size]f64 = .{ 0, 0, 0, 1 }; train(&weights, &bias, training_data, labels); for (0..training_set_size) |i| { const prediction = predict(weights, bias, training_data[i]); std.log.info("Input {} {}, Predicted output: {}", .{ training_data[i][0], training_data[i][1], prediction }); } } test "hello" { try testing.expect(true); }