about summary refs log tree commit diff
path: root/src/monkey_brain/main.zig
diff options
context:
space:
mode:
Diffstat (limited to 'src/monkey_brain/main.zig')
-rw-r--r--src/monkey_brain/main.zig80
1 files changed, 2 insertions, 78 deletions
diff --git a/src/monkey_brain/main.zig b/src/monkey_brain/main.zig
index 5d0e616..611dcd1 100644
--- a/src/monkey_brain/main.zig
+++ b/src/monkey_brain/main.zig
@@ -1,81 +1,5 @@
-const std = @import("std");
-const testing = std.testing;
-const math = std.math;
-
-const input_size: usize = 2;
-const training_set_size: usize = 4;
-const learning_rate: f64 = 0.1;
-const epochs: u64 = 1000000;
-
-fn sigmoid(x: f64) f64 {
-    return 1.0 / (1.0 + math.exp(-x));
-}
-
-fn sigmoid_derivative(output: f64) f64 {
-    return output * (1.0 - output);
-}
-
-fn predict(weights: [input_size]f64, bias: f64, inputs: [input_size]f64) f64 {
-    var total: f64 = bias;
-    for (inputs, 0..) |input, i| {
-        total += weights[i] * input;
-    }
-    return sigmoid(total);
-}
-
-fn train(weights: *[input_size]f64, bias: *f64, training_data: [training_set_size][input_size]f64, labels: [training_set_size]f64) void {
-    for (0..epochs) |_| {
-        for (training_data, labels) |inputs, label| {
-            const prediction = predict(weights.*, bias.*, inputs);
-            const err = label - prediction;
-            const adjustment = err * sigmoid_derivative(prediction);
-            for (inputs, 0..) |input, j| {
-                weights[j] += learning_rate * adjustment * input;
-            }
-            bias.* += learning_rate * adjustment;
-        }
-    }
-}
+const perceptron = @import("perceptron.zig");
 
 pub fn main() !void {
-    var weights = [_]f64{ std.crypto.random.float(f64), std.crypto.random.float(f64) };
-    var bias: f64 = std.crypto.random.float(f64);
-
-    const training_data = [_][input_size]f64{
-        .{ 0, 0 },
-        .{ 0, 1 },
-        .{ 1, 0 },
-        .{ 1, 1 },
-    };
-    const labels = [_]f64{ 0, 1, 1, 1 }; // OR operation
-
-    train(&weights, &bias, training_data, labels);
-
-    std.debug.print("Trained weights: {d}, {d}\n", .{ weights[0], weights[1] });
-    std.debug.print("Trained bias: {d}\n", .{bias});
-
-    for (training_data, labels) |inputs, expected| {
-        const prediction = predict(weights, bias, inputs);
-        std.debug.print("Input: {d}, {d}, Predicted: {d:.4}, Expected: {d}\n", .{ inputs[0], inputs[1], prediction, expected });
-    }
-}
-
-test "OR gate" {
-    var weights = [_]f64{ 0, 0 };
-    var bias: f64 = 0;
-
-    const training_data = [_][input_size]f64{
-        .{ 0, 0 },
-        .{ 0, 1 },
-        .{ 1, 0 },
-        .{ 1, 1 },
-    };
-    const labels = [_]f64{ 0, 1, 1, 1 };
-
-    train(&weights, &bias, training_data, labels);
-
-    for (training_data, labels) |inputs, expected| {
-        const prediction = predict(weights, bias, inputs);
-        try testing.expect((prediction - expected) < 0.1);
-    }
+    try perceptron.demo();
 }