diff options
author | makefunstuff <[email protected]> | 2024-07-08 23:49:37 +0200 |
---|---|---|
committer | makefunstuff <[email protected]> | 2024-07-08 23:49:37 +0200 |
commit | 8f2c7c513bc54bf127ff2ab00da1694fb981f442 (patch) | |
tree | 245ef5dd69575fd42bcd8fab99fe095dcf463a0c /src/monkey_brain/main.zig | |
parent | 82c57cbd54bc20c5a6b1f1a12f42db8018c0f07a (diff) | |
download | tinkerbunk-8f2c7c513bc54bf127ff2ab00da1694fb981f442.tar.gz |
refactoring
Diffstat (limited to '')
-rw-r--r-- | src/monkey_brain/main.zig | 80 |
1 files changed, 2 insertions, 78 deletions
diff --git a/src/monkey_brain/main.zig b/src/monkey_brain/main.zig index 5d0e616..611dcd1 100644 --- a/src/monkey_brain/main.zig +++ b/src/monkey_brain/main.zig @@ -1,81 +1,5 @@ -const std = @import("std"); -const testing = std.testing; -const math = std.math; - -const input_size: usize = 2; -const training_set_size: usize = 4; -const learning_rate: f64 = 0.1; -const epochs: u64 = 1000000; - -fn sigmoid(x: f64) f64 { - return 1.0 / (1.0 + math.exp(-x)); -} - -fn sigmoid_derivative(output: f64) f64 { - return output * (1.0 - output); -} - -fn predict(weights: [input_size]f64, bias: f64, inputs: [input_size]f64) f64 { - var total: f64 = bias; - for (inputs, 0..) |input, i| { - total += weights[i] * input; - } - return sigmoid(total); -} - -fn train(weights: *[input_size]f64, bias: *f64, training_data: [training_set_size][input_size]f64, labels: [training_set_size]f64) void { - for (0..epochs) |_| { - for (training_data, labels) |inputs, label| { - const prediction = predict(weights.*, bias.*, inputs); - const err = label - prediction; - const adjustment = err * sigmoid_derivative(prediction); - for (inputs, 0..) |input, j| { - weights[j] += learning_rate * adjustment * input; - } - bias.* += learning_rate * adjustment; - } - } -} +const perceptron = @import("perceptron.zig"); pub fn main() !void { - var weights = [_]f64{ std.crypto.random.float(f64), std.crypto.random.float(f64) }; - var bias: f64 = std.crypto.random.float(f64); - - const training_data = [_][input_size]f64{ - .{ 0, 0 }, - .{ 0, 1 }, - .{ 1, 0 }, - .{ 1, 1 }, - }; - const labels = [_]f64{ 0, 1, 1, 1 }; // OR operation - - train(&weights, &bias, training_data, labels); - - std.debug.print("Trained weights: {d}, {d}\n", .{ weights[0], weights[1] }); - std.debug.print("Trained bias: {d}\n", .{bias}); - - for (training_data, labels) |inputs, expected| { - const prediction = predict(weights, bias, inputs); - std.debug.print("Input: {d}, {d}, Predicted: {d:.4}, Expected: {d}\n", .{ inputs[0], inputs[1], prediction, expected }); - } -} - -test "OR gate" { - var weights = [_]f64{ 0, 0 }; - var bias: f64 = 0; - - const training_data = [_][input_size]f64{ - .{ 0, 0 }, - .{ 0, 1 }, - .{ 1, 0 }, - .{ 1, 1 }, - }; - const labels = [_]f64{ 0, 1, 1, 1 }; - - train(&weights, &bias, training_data, labels); - - for (training_data, labels) |inputs, expected| { - const prediction = predict(weights, bias, inputs); - try testing.expect((prediction - expected) < 0.1); - } + try perceptron.demo(); } |